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The effects of intrinsic noise on stochastic delay systems is studied within an expansion in the inverse
system size. We show that the stochastic nature of the underlying dynamics may induce oscillatory behavior in
parameter ranges where the deterministic system does not sustain cycles, and compute the power spectra of
these stochastic oscillations analytically, in good agreement with simulations. The theory is developed in the
context of a simple one-dimensional toy model, but is applicable more generally. Gene regulatory systems in
particular often contain only a small number of molecules, leading to significant fluctuations in messenger
RNA �mRNA� and protein concentrations. As an application we therefore study a minimalistic model of the
expression levels of hes1 mRNA and Hes1 protein, representing the simple motif of an autoinhibitory feedback
loop and motivated by its relevance to somite segmentation.
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I. INTRODUCTION

Most processes in biology are intrinsically stochastic, due
to the random fashion in which molecules interact. In order
for a biochemical reaction to occur, for example, all reagents
must be sufficiently close in space, and due to thermal or
other types of stochasticity the execution of reaction is fun-
damentally a stochastic process. This type of randomness
has, until recently, mostly been neglected in attempts to
model biochemical reaction systems, and deterministic rate
equations have often been used to describe the dynamics of
such systems. Noise has here often been assumed to have
only a minor effect on the dynamics so that it could safely be
ignored. The use of deterministic approaches implies the as-
sumption of large formally infinite system sizes; only in this
limit can the law of large numbers be applied to show that
the resulting mean-field equations give an accurate descrip-
tion of the dynamics of the system. Additionally, it is fre-
quently assumed implicitly that the reactor in which the
chemical dynamics takes place is well mixed so that spatial
variation in concentrations of the interacting chemicals can
be ignored.

The reason for the popularity of such approaches un-
doubtedly rests in their relative mathematical simplicity:
while the methods with which to analyze sets of nonlinear
deterministic differential equation are fully developed �see
e.g., �1� or similar textbooks�, a theory for the corresponding
stochastic systems is far less advanced. If the number of
reacting molecules in the system is small, the stochastic ef-
fects can no longer be ignored. An important example are
messenger RNA �mRNA� molecules in gene expression
�2–5�, where only a small number of molecules is involved
in the reaction dynamics. Unsurprisingly, deviations from the
mean-field dynamics are here to be expected, and stochastic
rather than deterministic modeling approaches to such sys-
tems in molecular biology are appropriate. Only in recent
years have analytical and more systematic studies of such
systems been undertaken, and substantial differences be-

tween the behavior of stochastic systems and their determin-
istic counterparts have been found in different model sys-
tems. In particular so-called demographic noise �6� due to
the discreteness of the dynamics may change the structure of
the attractor of a given system fundamentally. References
relevant for the present work can be found, e.g., in
�3–5,7–9�.

Stochastic approaches to biochemical reaction systems
typically start from a master equation describing the micro-
scopic dynamics; the deterministic mean-field dynamics can
then formally be derived to lowest order within a van Ka-
mpen expansion in the inverse system size �10�. Taking into
account next-to-leading order, finite-size corrections can alter
the dynamics considerably. Predator-prey systems with a
fixed point on the deterministic level can for example be
seen to exhibit coherent sustained oscillations at finite sizes
�7�. The spectrum of these cycles can be obtained analyti-
cally to striking precision within the system-size expansion.
Similar oscillations have been found in a variety of other
systems, including models of epidemiology, opinion dynam-
ics, and biochemical reaction networks �8,9�.

In addition to the discreteness of the dynamics and the
resulting intrinsic stochasticity, processes in gene regulatory
systems are typically subject to considerable delays induced
by the underlying biochemical reactions, i.e., processes such
as transcription and translation do not occur instantaneously,
but generate their reaction products only well after the reac-
tion has been triggered �3–5�. The aim of the present paper is
therefore to extend the theoretical tools developed in �7–9� to
the case of stochastic delay systems, and to use them to study
a simple model of gene regulation. As we will see the dy-
namics of such systems may well exhibit stochastic coherent
oscillations at finite system size in ranges of the reaction
rates where the deterministic infinite delay system has no
cycles, but approaches a fixed point instead. Such oscilla-
tions in delay stochastic systems have been reported in �3–5�,
but to our knowledge a theoretical computation of correla-
tions and power spectra of these cycles within a systematic
expansion in the inverse system size has not been attempted
in the context of such models. Theoretical approaches based
on generating functions have however been discussed in �5�.*tobias.galla@manchester.ac.uk

PHYSICAL REVIEW E 80, 021909 �2009�

1539-3755/2009/80�2�/021909�9� ©2009 The American Physical Society021909-1

http://dx.doi.org/10.1103/PhysRevE.80.021909


In this paper we will follow a complementary approach, and
in particular we will describe how the method of the system-
size expansion applies to delay systems, and how a linear
delay Langevin equation can be derived for fluctuations
about the trajectory of the deterministic mean-field system.
From this Langevin equation the power spectra of these sto-
chastic cycles can then be obtained analytically. Our analysis
therefore offers a theoretical characterization of results from
simulations reported, e.g., in �4�, and an alternative to the
analytical approaches discussed in �5�.

II. TOY MODEL

A. Definition and deterministic description

In order to develop the formalism we start with a simple
model of delay stochastic processes, and consider a system
in which there is only one reacting substance X. The dynam-
ics are given by the following reactions:

A → A + X , �1�

B + X → B , �2�

X + C ⇒ C . �3�

Note that neither reaction affects the number molecules of
substances A, B, and C in the system, so that these reactants
are mere “dummy” variables, and their only role is to set the
relative rates with which the three reactions occur. While the
first two reactions are assumed to occur instantaneously, the
third reaction involves a delay, we indicate this by the double
arrow in Eq. �3�, i.e., if a reaction between a molecule of
type C and a molecule of type X is triggered at time t, then
one molecule of type X is removed from the system at a later
time t+� �provided there is at least one X molecule in the
system at this later time�. For simplicity we will assume that
� is a constant delay period, but variable delay times, drawn,
e.g., from some probability distribution, can be in principle
considered as well �3�. The model in this setup has previ-
ously been discussed and studied within an alternative
approach in �5�.

On the mean-field level the concentration of X molecules
in the system is described by the delay differential equation

ẋ�t� = a − bx�t� − cx�t − �� , �4�

where a, b, and c are non-negative rate constants related to
the �constant� number of molecules of types A, B, and C in
the system, respectively �further details will be discussed be-
low�.

Equation �4� is linear and its asymptotic behavior can be
computed straightforwardly. In particular a linear stability
analysis has been carried out in �5�, and a phase diagram was
obtained in terms of the parameters a, b, c, and �. The only
fixed point of Eq. �4� is x�=a / �b+c�, and at fixed a it is
found to be unstable at large �c or small �b, respectively. In
such circumstances oscillations grow indefinitely. Below the
line marking the Hopf bifurcation in the ��b ,�c� plane, the
fixed point is stable �5�. We will focus on this regime in the
following.

B. Stochastic dynamics, van Kampen expansion, and spectrum
of fluctuations

In order to model the dynamics on the microscopic level,
let us assume the reactor in which the various reactions take
place contains a� molecules of type A, b� molecules of
type B, c� molecules of type C, and n particles of type X.
Since the number of A, B, and C molecules remains un-
changed by the reactions given above, the only dynamical
variable in the system is n�t� �which will be of order � as are
the numbers of the other particles in the system�. The first
reaction, Eq. �1�, then occurs with a rate a�, the second
reaction with rate nb, and the third with rate nc, and the
resulting stochastic process is described by the master equa-
tion �5�

d

dt
P�n,t� = a��E−1 − 1�P�n,t� + b�E − 1��nP�n,t��

+ c�
m=0

�

m�E − 1����n�P�n,t;m,t − ��� �5�

for the probability P�n , t� of finding the system in state n at
time t. E is here an operator acting on a function of n via
Ef�n�= f�n+1�, and not to be confused with an expectation
value of some kind. E−1 stands for the inverse operation.
��n� is the step function, i.e., ��n�0�=1 and ��n=0�=0,
which ensures that the delayed removal of X molecules only
occurs provided there is at least one molecule present in the
system at the time at which the removal is due to take place.
Note that Eq. �5� is not closed on the level of one-time quan-
tities, as P�n , t ;m , t−�� describes the joint probability distri-
bution of finding n X molecules at time t and m X molecules
at time t−�.

Following �10� and anticipating that n will be of order �
with fluctuations of order �1/2 we now introduce continuous
degrees of freedom, and write

n�t�
�

= x�t� +
��t�
�1/2 . �6�

The above master equation for P�n , t� can then be written in
terms of the distribution ��� , t�, and within an expansion in
powers of �−1/2 we have similar to �10�

�t���,t� − �1/2����,t�
��

ẋ

= a��− �−1/2 �

��
+ �−11

2

�2

��2����,t�

+ b��−1/2 �

��
+ �−11

2

�2

��2�
	���x�t� + �1/2�����,t��

+ c� d
	��−1/2 �

��
+ �−11

2

�2

��2�
	���x�t − �� + �1/2
����,t;
,t − ���
 , �7�

where we introduce 
 by writing n�t−�� /�=x�t−��
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+
 /�1/2, and where we have ignored higher-order terms.
Anticipating that we will take the limit of large systems
eventually and that trajectories at which n�t�=0 at any time
will not contribute in this limit we have ignored the factor
��n� in the last term of Eq. �5�. This is common in the
context of the van Kampen expansion, which is usually un-
able to capture features such as absorbing states at the
boundaries of configuration space. Collecting terms of order
�1/2 in Eq. �7� one finds

− �1/2��

��
ẋ = − a�1/2��

��
+ bx�t��1/2��

��
+ cx�t − ���1/2��

��

�8�

in the lowest order of the van Kampen expansion. We have
written � here as a shorthand for ��� , t� and used the iden-
tity ��� , t�=�d
��� , t ;
 , t−��. From Eq. �8� one has

ẋ�t� = a − bx�t� − cx�t − �� , �9�

i.e., one recovers the above deterministic Eq. �4�. To next-
leading order �i.e., collecting O��0� terms� one finds

�t���,t� =
1

2
a

�2

��2���,t� + b
�

��
�����,t�� +

1

2
bx�t�

�2

��2���,t�

+ c� d
	 �

��
�
���,t;
,t − ���

+
1

2
x�t − ��

�2

��2���,t;
,t − ��
 . �10�

Integrating out 
 in the last term one then has

�t���,t� =
1

2
a

�2

��2���,t� + b
�

��
�����,t�� +

1

2
bx�t�

�2

��2���,t�

+ c� d
	 �

��
�
���,t;
,t − ���


+ c
1

2
x�t − ��

�2

��2���,t� . �11�

At asymptotic times t the mean-field trajectory approaches
its fixed point �our analysis is restricted to the stable phase,
for similar studies in nondelay systems with a limit cycle see
�11��. We therefore replace x�t� and x�t−�� in Eq. �11� by
x�=a / �b+c�. With this substitution Eq. �11� then describes a
delayed Langevin dynamics of the form

�̇ = − b��t� − c��t − �� + ��t� , �12�

where ��t� is Gaussian white noise of zero mean and with
variance

���t���t��
 = �a + bx� + cx����t − t�� . �13�

The equivalence of delay Langevin equations of type �12�
and generalized Fokker-Planck equations of type �11� is es-
tablished by Frank et al. �12,13� using the “method of steps.”
These considerations are based on the formulation of the
one-dimensional delay Langevin Eq. �12� as a multidimen-
sional Langevin equation on the time interval �0,��. This
multidimensional Langevin equation involves couplings be-

tween the different coordinates, where each coordinate rep-
resents a time interval of length � of the original process, and
where the coupling reflects the delay. The multivariate prob-
lem itself is then local in time and does not have delay terms.
A corresponding multivariate Fokker-Planck equation can
hence be derived straightforwardly. Equations of type �11�
are then obtained using a suitable projection. We will here
not discuss the further details, but refer to �12,13�. Second it
is worth pointing out that a Langevin description can be
obtained without explicitly assuming that the deterministic
system has reached a fixed point. We have made this assump-
tion early on in the calculation mainly to keep the mathemat-
ics simple. A more elaborate approach is taken for example
in �11�, where we have studied stochastic processes which in
the deterministic limit tend to limit cycles. A Langevin equa-
tion can then still be derived, but the subsequent analysis is
more intricate as drift and diffusion coefficients may come
out as time dependent. We will not discuss such cases further
in this paper, as we are mostly interested in systems which
approach a fixed point in the deterministic description.

Equation �12� is linear and can be solved in Fourier space
�similar approaches to delay Langevin equations have been
discussed in �14��. In particular one has

�i
 + b + ce−i
���̃�
� = �̃�
� , �14�

where �̃�
� and �̃�
� indicate the Fourier transforms of ��t�
and ��t�, respectively. From Eq. �14� one directly reads off
the power spectrum of ��t� and finds

P�
� � ���̃�
��2


=
a + bx� + cx�

�b + c cos�
���2 + �
 − c sin�
���2

=
2a

�b + c cos�
���2 + �
 − c sin�
���2 . �15�

We have here used the relation ��̃�
��̃�
��
= �a+bx�

+cx����
+
��, where �¯ 
 denotes an average over the sto-
chastic process described by Fokker-Planck Eq. �11�, or
equivalently over realizations of Langevin Eq. �12�.

C. Test against simulations

Microscopic simulations of the processes defined by reac-
tions �1�–�3� can be carried out using the algorithm originally
proposed by Gillespie �16�, suitably modified to take into
account the delayed reactions. Details of such modified
Gillespie schemes have been discussed for example in �17�,
but for completeness we reiterate them here. Essentially the
simulations follow that of the classic Gillespie algorithm
�16�, and whenever a delayed reaction is triggered it is added
to a list of delay reactions to be executed at a later time ��
units of time after the reaction is initiated�. This list is con-
stantly updated, and delay reactions are executed �and re-
moved from the list� in a manner consistent with the proba-
bilistic description in terms of the above master equation.
Specifically the simulations of our toy model dynamics pro-
ceed according to the following algorithm:
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�1� Initialize. Set model parameters a, b, and c and the
system size �. Set the initial number n of molecules X, and
set t=0. Set list of scheduled delay reaction to an empty list.

�2� Calculate the propensity functions a1=a�, a2=bn,
and a3=cn.

�3� Compute a0=a1+a2+a3.
�4� Generate an independent random number r from a

uniform distribution over �0,1�, and set �=−ln�r� /a0.
�5� If there is a delayed reaction scheduled to occur during

the interval �t , t+�� then
�a� Identify next delayed reaction scheduled, and, pro-

vided n�0 execute it, i.e., reduce n by one. If n=0 before
the reaction, then do not execute the update �otherwise n
would go negative�. In either case remove the reaction from
the list of scheduled reactions.

�b� Update t to the time for which this reaction was sched-
uled.

�c� Go to 2.
�6� If there is no delayed reaction scheduled for the inter-

val �t , t+�� then
�a� Generate an independent random number r from a

uniform distribution over �0,1�, and find �� �1,2 ,3� such
that

�
k=1

�−1

ak � r� � �
k=1

�

ak.

�b� If �=1 or �=2 and then execute the corresponding
reaction �not a delay reaction�, and increment t by �. Go to
2.

�c� If �=3, schedule a reaction of type X+C⇒C to be
executed at later time t+�, i.e., amend list of scheduled re-
actions accordingly. Increment t by �, and go to 2.

Each run of the simulation generates a time series n�t�
from which ��t�=�N�n�t� /�−x�� can be obtained �after a
suitable equilibration time�, where x� is the asymptotic fixed-
point value of the deterministic dynamics given by Eq. �9�,
i.e., x�=a / �b+c�, or equivalently the long-time average of
n�t� /�. From these time series ��t� a numerical measurement
of the power spectrum P�
� is obtained by subsequent Fou-
rier transform, and finally results are averaged over a suffi-
ciently large number of independent runs.

Results of stochastic simulations of this system are shown
in Figs. 1 and 2. The first figure depicts a single run of the
stochastic system and shows that coherent oscillations are
sustained in parameter regimes in which the deterministic
equations approach a fixed point. The mechanism by which
these oscillations are generated is the following: the deter-
ministic system approaches its fixed point in an oscillatory
manner �i.e., the Jacobian at the fixed point has eigenvalues
with nonzero imaginary parts�, and the stochasticity of the
finite system results in persistent perturbations away from
this fixed point, so that both features together result in an
overall oscillatory effect. This has been seen in a variety of
different systems �7,9�, but it is worth pointing out that in
nondelay systems a minimum of two dimensions is neces-
sary to allow for a complex eigenvalue of the Jacobian. In
delay systems one degree of freedom is sufficient �5�, so that
even the one-dimensional toy model discussed in this section

is able to produce demographic oscillations about the mean-
field fixed point. Figure 2 demonstrates that the analytically
obtained spectrum, Eq. �15�, agrees very well with simula-
tions; we attribute the remaining small discrepancies to
finite-size or equilibration effects. A similar figure was ob-
tained by different methods �based on generating functions�
in �5�.

III. SIMPLE MODEL OF GENE REGULATION

The second system we will be studying is a simple model
of gene regulation. We here chose a system that represents
one of the most common motifs in gene regulatory networks,
namely, a model of a single gene-protein synthesis with
negative delayed feedback �5�. Specifically we address a
model previously discussed in �4�, describing the coupled
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n/ Ω
380 390 400 410 420
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FIG. 1. �Color online�. Dynamics of the toy model at a=100,
b=4.1, c=4, and �=2. The dark line with decaying oscillations in
the main panel shows the behavior of the concentration of X mol-
ecules in the deterministic system, Eq. �9� �15�. The noisy line with
persistent oscillations represents one simulation run of the stochas-
tic dynamics at �=100. The inset shows a zoom at large times in
the equilibrated regime, the horizontal line is the mean-field fixed
point, and the stochastic system shows persistent cycles.
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FIG. 2. �Color online� Power spectrum P�
�= ���̃�
��2
 of the
fluctuations about the mean-field fixed point of the toy model. Pa-
rameters a, b, and c are as in Fig. 1. The line shows the analytically
obtained spectrum of Eq. �15�, symbols represent results from simu-
lations at �=200 �averaged over 341 samples, measurements start
at t=100 to allow for some equilibration period�.

TOBIAS GALLA PHYSICAL REVIEW E 80, 021909 �2009�

021909-4



time behavior of the expression levels of so-called hes1 mes-
senger RNA �mRNA� and Hes1 protein. Following the nota-
tion in biology literature we will italicize and use lower case
when referring to mRNA, and will use nonitalicized font
with the first letter in upper case when referring to the pro-
tein �18,4�. Hes1 here is a Notch-signaling molecule, where
the so-called Delta-Notch signaling process is a mechanism
for cell-cell communication and underlies cell differentiation
for example in vertebrates �3,19,20�. Cycles with a time pe-
riod of approximately two hours have been reported for the
concentrations of hes1 mRNA and Hes1 protein in mice
�4,18�. These oscillatory processes, also referred to as the
somite-segmentation clock �20�, are linked to the formation
of somites, i.e., the emergence of blocks of cells which de-
termine the future positions of skeletal muscles or vertebrae
�3,20�. Spatial segmentation in the body here can be under-
stood as a reflexion of temporal oscillations in gene expres-
sion �3,19–21�. The underlying molecular mechanism pro-
ducing the oscillations of mRNA and protein are hence of
great interest, and several mathematical models have been
proposed, among them �4,5,21–23�. See also �2,24� for sto-
chastic effects in models of gene regulation.

We will not discuss the details of the biochemical mecha-
nisms in this paper, but will only present a brief abstraction
of the reactions necessary to define the mathematical model
we will study here. Further details on modeling genetic cir-
cuits can be found in �25� or in similar textbooks. In essence
the model describes the concentrations and interactions of
two types of substances, hes1 mRNA and Hes1 protein, as
illustrated in Fig. 3. mRNA molecules are produced by tran-
scription of DNA. This involves several biochemical pro-
cesses �e.g., elongation and splicing� which we will neglect
in our description. The rate at which mRNA molecules are
produced depends on the concentration of protein through a
negative feedback mechanism. Transcription is here associ-
ated with a delay time �, so that it is the protein concentra-
tion at time t−� which affects the production rate of mRNA
at time t. This will be explained further below. mRNA is also
subject to degradation �i.e., removal from the system� at a

constant rate �m. In a process subsequent to transcription
hes1 mRNA molecules are translated into Hes1 protein �the
mRNA molecule is not used up in this process�. Translation
may involve another delay, which for simplicity can be ab-
sorbed into the transcriptional delay �5�. Protein molecules
finally are subject to a degradation process at rate �p. Cru-
cially, a negative feedback is induced by a repressatory effect
of Hes1 protein on the transcription process. Hes1 dimers
may bind to the relevant promoter regions in the DNA, and
reduce the transcription rate at which mRNA is generated
�following �4� dimerization is not discussed as an explicit
step in our work, but see �5� for models taking this into
account�. The transcriptional repressor Hes1 thus negatively
affects its own expression �18�. Mathematically this is mod-
eled by a transcription rate which depends on the concentra-
tion of protein via a decreasing function, as we will now
explain.

We will focus on the model proposed in �4,22�. In its
deterministic form it is given by the differential equations

d

dt
M�t� = �mf„P�t − ��… − �mM�t� , �16�

d

dt
P�t� = �pM�t� − �pP�t� . �17�

M�t� here labels the concentration of hes1 mRNA, and
P�t� that of the Hes1 protein. �m and �p are degradation
rates for the mRNA and the protein, respectively, and �m is
the mRNA transcription rate in the absence of protein ex-
pression �f�P� is still to be defined, but we will have f�0�
=1�. �p is the translation rate. f�P� finally is a monotonically
decreasing Hill function representing the suppression of
mRNA production through the binding of Hes1 protein
dimers into the promotion region. In the model it takes the
form �4,25�

f�P�t�� =
1

1 + �P�t�/P0�h �18�

with h the so-called Hill coefficient. P0 is the concentration
of protein at which f�P= P0�=1 /2. Equations �16� and �17�
are the deterministic abstraction of an underlying micro-
scopic stochastic model defined by the following four reac-
tions �4�:

M→
�m

� , �19�

P→
�p

� , �20�

M→
�p

M + P , �21�

� ⇒
�mf

M . �22�

These dynamics may be described by a stochastic process
for the numbers nm of mRNA molecules and np of protein
molecules in the system. For later convenience we will write
n= �nm ,np�. The first two reactions here describe the degra-

FIG. 3. �Color online� Schematic illustration of the Hes1 regu-
latory system. See �22� for a similar picture. The first process �tran-
scription� includes the elongation, splicing, processing and export
from the nucleus of primary gene transcript. The synthesis of Hes1
protein occurs by translation of hes1 mRNA. Any translational de-
lay is here absorbed into the transcriptional delay time �. The Hes1
protein finally represses the transcription through the binding to the
promoter. Both, the mRNA and the protein are subject to
degradation.
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dation of mRNA and protein, respectively. The third reaction
captures the translation of mRNA into protein. The last reac-
tion finally corresponds to the production of hes1 mRNA via
transcription. Note that DNA is not part of the dynamical
model �its concentration is constant�, which is why M ap-
pears to be produced out of the void in the fourth reaction. In
absence of protein �np=0� this reaction occurs at a rate �m,
but is suppressed by the Hes1 protein, and in total the rate at
which mRNA is produced at time t is hence �mf(np�t
−�� /�), where � is a measure of the system size. The time
lag � in the argument of f models the delayed repression of
hes1 mRNA production by the protein. The rate of produc-
tion of mRNA at time t is therefore negatively regulated by
the concentration of protein at time t−�. A typical run of the
stochastic system is shown and compared with the determin-
istic system in Fig. 4. Model parameters are chosen as in �4�,
in particular delay times estimated from real-world experi-
ments are typically in the range of 15–20 min, sometimes
ranging up to 30 min �4,21,22�. As seen in the figure, the
deterministic system approaches a stable fixed point asymp-
totically, with a complex eigenvalue as indicated by the de-
caying modulations. The stochastic system at finite size re-
mains in an oscillatory state as previously observed in �4�.
We will now proceed to characterize these oscillations ana-
lytically, applying the formalism developed in the previous
section.

The master equation describing processes �19�–�22� then
takes the form

d

dt
P�n;t� = �m�EM − 1��nmP�n;t�� + �p�EP − 1��npP�n;t��

+ �p�EP
−1 − 1��nmP�n;t�� + �m��

n�

f�np�/��

	�EM
−1 − 1��P�n,t;n�,t − ��� , �23�

where P�n , t� is the probability of finding the system in state
n at time t, and P�n , t ;n� , t�� is the probability for the system
to be in state n at t and in state n� at time t�. EM and EP are
raising operators acting on functions of nm ,np via
EMg�nm ,np�=g�nm+1,np� and EPg�nm ,np�=g�nm ,np+1�. In
the case of two-time quantities, e.g., P�n , t ;n� , t��, the rais-
ing or lowering occurs in the first �later-time� argument n.
Note that all terms on the right-hand side of Eq. �23� are of
order �. This overall factor could in principle be absorbed
into a re-scaling of time, even though we will not do so here.

The further analysis proceeds along the lines of what was
discussed for the toy model, and we will not report all inter-
mediate steps in all detail. First one writes

nm�t�
�

= M�t� +
�m�t�
�1/2 , �24�

np�t�
�

= P�t� +
�p�t�
�1/2 , �25�

and then systematically expands the above master equation
in powers of �−1/2. To lowest order one recovers mean-field
Eqs. �16� and �17�, and in next-to-leading order one finds
Langevin equations for the fluctuations about the mean-field
trajectory. In the fixed-point regime of the mean-field dy-
namics �i.e., at large times t� these equations read

�̇m�t� = − �m�m�t� + �mf��P���p�t − �� + �m�t� , �26�

�̇p�t� = �p�m�t� − �p�p�t� + �p�t� , �27�

where �M� , P�� is the mean-field fixed point, f��P�
=df�P� /dP=−hP0

−1�1+ P / P0�−�h+1�. �m�t� and �p�t� are
Gaussian noise terms of zero mean and in the limit of large
t , t� �when the mean-field trajectory has reached its fixed
point� they have covariances

��m�t��m�t��
 = ��t − t����mM� + �mf�P��� , �28�

��p�t��p�t��
 = ��t − t����pP� + �pM�� , �29�

��m�t��m�t��
 = 0. �30�

Inverting in Fourier space one then finds after some algebraic
manipulations

���̃m�
��2
 =
�
2 + �p

2���mf�P�� + �mM�� + ��mf��P���2��pM� + �pP��
�− 
2 + �m�p − �m�pf��P��cos�
���2 + ���m + �p�
 + �m�pf��P��sin�
���2 , �31�
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FIG. 4. �Color online� Time series of the concentrations of
mRNA and protein concentrations respectively. Solid curves, de-
caying toward a fixed point, are from a numerical integration of the
deterministic dynamics, Eqs. �16� and �17�. Curves with persistent
oscillations represent a single run of the stochastic dynamics at �
=1000. Model parameters are as some of the examples in �4�: P0

=10, h=4.1, �=18.7, �m=�p=1, and �m=�p=0.03. Units of �p,
�m and of �m, �p are min−1, � is measured in minutes �4�.
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���̃p�
��2
 =
�p

2��mf�P�� + �mM�� + �
2 + �m
2 ���pM� + �pP��

�− 
2 + �m�p − �m�pf��P��cos�
���2 + ���m + �p�
 + �m�pf��P��sin�
���2 . �32�

The resulting power spectra for a given set of parameters
used, e.g., in �4�, are shown in Fig. 5, and as seen in the
figure direct simulations based on a modified Gillespie algo-
rithm, similar to the one described in the section of the toy
model, agree well with the theoretical predictions. Remain-
ing discrepancies are presumably due to finite-size and
equilibration effects. We note that the peak of the spectra
shown in Fig. 5 occurs at an angular frequency of roughly

�0.05 in units of 1/min, corresponding to a time period of
T�125 min, i.e., approximately two hours and therefore
close to the results from experiments reported, e.g., by Hirata
et al. �18�. This agreement is of course a consequence of the
specific choice of parameters, but it demonstrates that the
oscillatory behavior of mRNA and protein concentrations
can be observed in the stochastic models at values of the
model parameters, for which the deterministic system does
not sustain oscillations. This enlarges the range of permis-
sible model parameters, and our analysis as well as that of
�4,5� may therefore provide a starting point for further more
elaborate stochastic models of the somite-segmentation
clock. One should here stress that the agreement with data
from real-world experiments is far from perfect however.
The amplitude of oscillations in the protein levels for ex-
ample is much lower than those observed in experiments
�18�, so that further improvements of the model are required,
potentially based on the analytical method discussed in the
present work. Our theoretical analysis may also be used in
order to test the robustness of the model without performing
costly stochastic simulations throughout a large range of pa-
rameter values. In Fig. 6 for example we depict the fre-

quency at which the spectrum of mRNA fluctuations has its
maximum in dependence on the time delay �. This data is to
be compared with Fig. 8 of �4�, where quantitatively very
similar results were obtained from actual stochastic simula-
tions. Care needs to be taken though in interpreting the maxi-
mum of the power spectra as the frequency at which the
system oscillates. The peaks in the spectra can be broad and
hence several modes contribute. Also, of course, finite sys-
tems at small sizes may show deviations from the curves
obtained from the system-size expansion, as the latter curves,
even though they represent the next-to-leading order in
�−1/2, can only be expected to be accurate at large system
sizes. Still, Fig. 6 provides a theoretical confirmation of the
findings of �4�, and suggests that two-hour cycles are found
at values of the delay time of about ��5–10 min at h=3
and at slightly larger values of ��15–17 min at h=4. It
should be noted however that the variation in the observed
time period is rather small as � and h are varied in Fig. 6 so
that other parameter ranges are not ruled out by the experi-
mentally observed 2 hr period. Still, with theoretical ap-
proaches available along the lines discussed in the present
paper or along those of �5�, the most efficient way of identi-
fying parameter values compatible with measurements in
real-world experiments might be to use analytical expres-
sions of the type presented in Eqs. �31� and �32� first to
narrow down the range of possible parameter values. Such
closed-form expressions can be evaluated relatively quickly
and this preselection of model parameters based on analyti-
cal results is hence much less costly than performing param-
eter scans in stochastic simulations. Once suitable parameters
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FIG. 5. �Color online� Power spectra of the fluctuations of
mRNA and protein concentrations, respectively. Solid lines are the
analytical expressions of Eqs. �31� and �32�. Markers are from
simulations at system size �=5000, and dashed lines from simula-
tions at �=500. Averages over more than 700 independent samples
are taken in the simulations. Measurements start at t=3000 min in
order to allow for equilibration. Model parameters are P0=10, h
=4.1, �=18.7, �m=�p=1, and �m=�p=0.03 �4�.
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FIG. 6. �Color online� Frequency 1 /T at which the power spec-
trum of mRNA fluctuations has its maximum. Results are from Eq.
�31�, evaluated at the fixed point of the mean-field dynamics. The
latter is obtained by integrating the deterministic Eqs. �16� and �17�
using an Euler-forward scheme ��t=0.1�. Model parameters are
P0=100, �m=�p=1, and �m=�p=0.03. The figure is to be com-
pared with Fig. 8 of �4�.
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have been identified from the theory, subsequent stochastic
simulations in a much smaller range of parameters can then
be carried out to confirm whether or not the experimentally
observed behavior is indeed found in the stochastic system.

IV. DISCUSSION AND CONCLUDING REMARKS

In summary we have successfully extended recent analy-
ses of the effects of intrinsic noise to chemical systems with
delay. In particular we have shown that the picture of coher-
ent oscillations, induced by the discreteness of the micro-
scopic dynamics, applies to systems with delay as well. Sto-
chastic self-sustained oscillations can here be found in finite
systems at choices of the model parameters for which the
infinite system, described by deterministic mean-field equa-
tions, does not exhibit cycles. This observation has important
implications for the modeling of oscillatory biological sys-
tems with delay, as reaction rates are often not known ex-
perimentally, but are instead tuned in theoretical approaches,
in order to ensure that simple model systems reproduce the
experimentally observed oscillatory behavior. Our analysis
shows that confining model parameters to ranges in which
the deterministic model shows oscillations may be unneces-
sarily restrictive, as the stochastic dynamics at finite system
size may well exhibit oscillatory behavior outside these
ranges of the model parameters.

While this observation as such has been made previously,
e.g., in �4,5�, the main contribution of the present work is the
extension of van Kampen expansion techniques to the case
of stochastic delay systems, and based on the resulting
Langevin equation the analytical calculation of the power
spectra of fluctuations about mean-field fixed points in delay
systems. To our knowledge this has not been attempted be-
fore, even though previous work on Kramers-Moyal expan-
sions in delay systems can be found in �26�. Our approach is
here complementary to that of �5�, which have used generat-
ing function techniques to study master equations of delay
systems, and to computer power spectra in good agreement

with simulations, but which, in our understanding, have not
carried out a systematic expansion in the inverse system size.
Since the two approaches each rely on a series of approxi-
mations and simplifications analytical expressions derived in
the two formalisms may not be fully equivalent. The spectra
derived in our work are however in excellent agreement with
simulations, confirming the validity of the procedure carried
out here. We have here first developed the general theory in
the context of a simple one-dimensional system. Generaliza-
tion to more complex models with a higher number of de-
grees of freedom is possible however, and as a further ex-
ample we have addressed a basic model of gene regulation.
In particular we have studied a delay system describing the
regulatory processes underlying the expression of hes1
mRNA and Hes1 protein. Simulational work has here re-
cently been reported by Barrio et al. �4�, and our work
complements these mostly computational studies by an ana-
lytical computation of the spectra of the observed oscilla-
tions in mRNA and protein expression levels. See again also
�5� for related models. Based on our analytical results further
characterization of the behavior of the model is possible,
without the need to perform computationally expensive
simulations in a wide range of parameters. This could serve
as a starting point for the development of more realistic sto-
chastic models of the somite-segmentation clock, with a
view of reducing the remaining discrepancies with experi-
mental data �27�. Our theoretical approach is furthermore
applicable more generally, and can be expected to be useful
for the theoretical understanding of the behavior more intri-
cate stochastic delay systems.
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